Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 16 de 16
Filtre
1.
Sci Adv ; 9(23): eadg2248, 2023 06 09.
Article Dans Anglais | MEDLINE | ID: covidwho-20239375

Résumé

Numerous viruses use specialized surface molecules called fusogens to enter host cells. Many of these viruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can infect the brain and are associated with severe neurological symptoms through poorly understood mechanisms. We show that SARS-CoV-2 infection induces fusion between neurons and between neurons and glia in mouse and human brain organoids. We reveal that this is caused by the viral fusogen, as it is fully mimicked by the expression of the SARS-CoV-2 spike (S) protein or the unrelated fusogen p15 from the baboon orthoreovirus. We demonstrate that neuronal fusion is a progressive event, leads to the formation of multicellular syncytia, and causes the spread of large molecules and organelles. Last, using Ca2+ imaging, we show that fusion severely compromises neuronal activity. These results provide mechanistic insights into how SARS-CoV-2 and other viruses affect the nervous system, alter its function, and cause neuropathology.


Sujets)
COVID-19 , Animaux , Humains , Souris , SARS-CoV-2/physiologie , Neurones , Encéphale , Névroglie
3.
J Neurol Neurosurg Psychiatry ; 93(12): 1343-1348, 2022 Dec.
Article Dans Anglais | MEDLINE | ID: covidwho-2038335

Résumé

BACKGROUND: To assess whether SARS-CoV-2 infection may affect the central nervous system, specifically neurons and glia cells, even without clinical neurological involvement. METHODS: In this single centre prospective study, serum levels of neurofilament light chain (sNfL) and glial fibrillar acidic protein (sGFAp) were assessed using SimoaTM assay Neurology 2-Plex B Assay Kit, in 148 hospitalised patients with COVID-19 without clinical neurological manifestations and compared them to 53 patients with interstitial pulmonary fibrosis (IPF) and 108 healthy controls (HCs). RESULTS: Age and sex-corrected sNfL levels were higher in patients with COVID-19 (median log10-sNfL 1.41; IQR 1.04-1.83) than patients with IPF (median log10-sNfL 1.18; IQR 0.98-1.38; p<0.001) and HCs (median log10-sNfL 0.89; IQR 0.72-1.14; p<0.001). Likewise, age and sex-corrected sGFAP levels were higher in patients with COVID-19 (median log10-sGFAP 2.26; IQR 2.02-2.53) in comparison with patients with IPF (median log10-sGFAP 2.15; IQR 1.94-2.30; p<0.001) and HCs (median log10-sGFAP 1.87; IQR 0.64-2.09; p<0.001). No significant difference was found between patients with HCs and IPF (p=0.388 for sNfL and p=0.251 for sGFAp). In patients with COVID-19, a prognostic model with mortality as dependent variable (26/148 patients died during hospitalisation) and sNfl, sGFAp and age as independent variables, showed an area under curve of 0.72 (95% CI 0.59 to 0.84; negative predictive value (NPV) (%):80,positive predictive value (PPV)(%): 84; p=0.0008). CONCLUSION: The results of our study suggest that neuronal and glial degeneration can occur in patients with COVID-19 regardless of overt clinical neurological manifestations. With age, levels of sNfl and GFAp can predict in-hospital COVID-19-associated mortality and might be useful to assess COVID-19 patient prognostic profile.


Sujets)
Encéphale , COVID-19 , Névroglie , Neurones , Humains , Marqueurs biologiques/sang , Encéphale/anatomopathologie , Encéphale/virologie , COVID-19/mortalité , COVID-19/anatomopathologie , Protéines neurofilamenteuses/sang , Névroglie/anatomopathologie , Névroglie/virologie , Neurones/anatomopathologie , Neurones/virologie , Études prospectives , SARS-CoV-2 , Mâle , Femelle , Pronostic
4.
Viruses ; 14(6)2022 06 03.
Article Dans Anglais | MEDLINE | ID: covidwho-1884379

Résumé

The numerous neurological syndromes associated with COVID-19 implicate an effect of viral pathogenesis on neuronal function, yet reports of direct SARS-CoV-2 infection in the brain are conflicting. We used a well-established organotypic brain slice culture to determine the permissivity of hamster brain tissues to SARS-CoV-2 infection. We found levels of live virus waned after inoculation and observed no evidence of cell-to-cell spread, indicating that SARS-CoV-2 infection was non-productive. Nonetheless, we identified a small number of infected cells with glial phenotypes; however, no evidence of viral infection or replication was observed in neurons. Our data corroborate several clinical studies that have assessed patients with COVID-19 and their association with neurological involvement.


Sujets)
COVID-19 , SARS-CoV-2 , Animaux , Encéphale , Cricetinae , Humains , Névroglie , Neurones
5.
Reprod Toxicol ; 111: 34-48, 2022 08.
Article Dans Anglais | MEDLINE | ID: covidwho-1819592

Résumé

The possible neurodevelopmental consequences of SARS-CoV-2 infection are presently unknown. In utero exposure to SARS-CoV-2 has been hypothesized to affect the developing brain, possibly disrupting neurodevelopment of children. Spike protein interactors, such as ACE2, have been found expressed in the fetal brain, and could play a role in potential SARS-CoV-2 fetal brain pathogenesis. Apart from the possible direct involvement of SARS-CoV-2 or its specific viral components in the occurrence of neurological and neurodevelopmental manifestations, we recently reported the presence of toxin-like peptides in plasma, urine and fecal samples specifically from COVID-19 patients. In this study, we investigated the possible neurotoxic effects elicited upon 72-hour exposure to human relevant levels of recombinant spike protein, toxin-like peptides found in COVID-19 patients, as well as a combination of both in 3D human iPSC-derived neural stem cells differentiated for either 2 weeks (short-term) or 8 weeks (long-term, 2 weeks in suspension + 6 weeks on MEA) towards neurons/glia. Whole transcriptome and qPCR analysis revealed that spike protein and toxin-like peptides at non-cytotoxic concentrations differentially perturb the expression of SPHK1, ELN, GASK1B, HEY1, UTS2, ACE2 and some neuronal-, glia- and NSC-related genes critical during brain development. Additionally, exposure to spike protein caused a decrease of spontaneous electrical activity after two days in long-term differentiated cultures. The perturbations of these neurodevelopmental endpoints are discussed in the context of recent knowledge about the key events described in Adverse Outcome Pathways relevant to COVID-19, gathered in the context of the CIAO project (https://www.ciao-covid.net/).


Sujets)
COVID-19 , SARS-CoV-2 , Angiotensin-converting enzyme 2 , Encéphale/métabolisme , Enfant , Humains , Névroglie , Neurones/métabolisme , Peptides , Glycoprotéine de spicule des coronavirus/métabolisme
6.
Aging Cell ; 21(4): e13575, 2022 04.
Article Dans Anglais | MEDLINE | ID: covidwho-1788808

Résumé

Dopamine (DA) signaling via G protein-coupled receptors is a multifunctional neurotransmitter and neuroendocrine-immune modulator. The DA nigrostriatal pathway, which controls the motor coordination, progressively degenerates in Parkinson's disease (PD), a most common neurodegenerative disorder (ND) characterized by a selective, age-dependent loss of substantia nigra pars compacta (SNpc) neurons, where DA itself is a primary source of oxidative stress and mitochondrial impairment, intersecting astrocyte and microglial inflammatory networks. Importantly, glia acts as a preferential neuroendocrine-immune DA target, in turn, counter-modulating inflammatory processes. With a major focus on DA intersection within the astrocyte-microglial inflammatory network in PD vulnerability, we herein first summarize the characteristics of DA signaling systems, the propensity of DA neurons to oxidative stress, and glial inflammatory triggers dictating the vulnerability to PD. Reciprocally, DA modulation of astrocytes and microglial reactivity, coupled to the synergic impact of gene-environment interactions, then constitute a further level of control regulating midbrain DA neuron (mDAn) survival/death. Not surprisingly, within this circuitry, DA converges to modulate nuclear factor erythroid 2-like 2 (Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/ß-catenin signaling, a key pathway for mDAn neurogenesis, neuroprotection, and immunomodulation, adding to the already complex "signaling puzzle," a novel actor in mDAn-glial regulatory machinery. Here, we propose an autoregulatory feedback system allowing DA to act as an endogenous Nrf2/Wnt innate modulator and trace the importance of DA receptor agonists applied to the clinic as immune modifiers.


Sujets)
Dopamine , Maladie de Parkinson , Sujet âgé , Encéphale/métabolisme , Dopamine/métabolisme , Neurones dopaminergiques/métabolisme , Facteur de transcription GABP , Humains , Facteur-2 apparenté à NF-E2/métabolisme , Névroglie/métabolisme , Maladie de Parkinson/métabolisme
7.
Neurobiol Dis ; 168: 105715, 2022 06 15.
Article Dans Anglais | MEDLINE | ID: covidwho-1763913

Résumé

The coronavirus disease 2019 (COVID-19) pandemic is responsible for 267 million infections and over 5 million deaths globally. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded RNA beta-coronavirus, which causes a systemic inflammatory response, multi-organ damage, and respiratory failure requiring intubation in serious cases. SARS-CoV-2 can also trigger neurological conditions and syndromes, which can be long-lasting and potentially irreversible. Since COVID-19 infections continue to mount, the burden of SARS-CoV-2-induced neurologic sequalae will rise in parallel. Therefore, understanding the spectrum of neurological clinical presentations in SARS-CoV-2 is needed to manage COVID-19 patients, facilitate diagnosis, and expedite earlier treatment to improve outcomes. Furthermore, a deeper knowledge of the neurological SARS-CoV-2 pathomechanisms could uncover potential therapeutic targets to prevent or mitigate neurologic damage secondary to COVID-19 infection. Evidence indicates a multifaceted pathology involving viral neurotropism and direct neuroinvasion along with cytokine storm and neuroinflammation leading to nerve injury. Importantly, pathological processes in neural tissue are non-cell autonomous and occur through a concerted breakdown in neuron-glia homeostasis, spanning neuron axonal damage, astrogliosis, microgliosis, and impaired neuron-glia communication. A clearer mechanistic and molecular picture of neurological pathology in SARS-CoV-2 may lead to effective therapies that prevent or mitigate neural damage in patients contracting and developing severe COVID-19 infection.


Sujets)
COVID-19 , COVID-19/complications , Évolution de la maladie , Homéostasie , Humains , Névroglie , Neurones , SARS-CoV-2
8.
Front Immunol ; 12: 783725, 2021.
Article Dans Anglais | MEDLINE | ID: covidwho-1554650

Résumé

Interferons (IFNs) are cytokines that possess antiviral, antiproliferative, and immunomodulatory actions. IFN-α and IFN-ß are two major family members of type-I IFNs and are used to treat diseases, including hepatitis and multiple sclerosis. Emerging evidence suggests that type-I IFN receptors (IFNARs) are also expressed by microglia, astrocytes, and neurons in the central and peripheral nervous systems. Apart from canonical transcriptional regulations, IFN-α and IFN-ß can rapidly suppress neuronal activity and synaptic transmission via non-genomic regulation, leading to potent analgesia. IFN-γ is the only member of the type-II IFN family and induces central sensitization and microglia activation in persistent pain. We discuss how type-I and type-II IFNs regulate pain and infection via neuro-immune modulations, with special focus on neuroinflammation and neuro-glial interactions. We also highlight distinct roles of type-I IFNs in the peripheral and central nervous system. Insights into IFN signaling in nociceptors and their distinct actions in physiological vs. pathological and acute vs. chronic conditions will improve our treatments of pain after surgeries, traumas, and infections.


Sujets)
Douleur aigüe/immunologie , Douleur chronique/immunologie , Interféron de type I/métabolisme , Interféron gamma/métabolisme , Maladies neuro-inflammatoires/immunologie , Douleur aigüe/anatomopathologie , Animaux , Douleur chronique/anatomopathologie , Modèles animaux de maladie humaine , Humains , Névroglie/cytologie , Névroglie/immunologie , Névroglie/anatomopathologie , Maladies neuro-inflammatoires/anatomopathologie , Nocicepteurs/immunologie , Nocicepteurs/métabolisme , Récepteur interféron/métabolisme , Transduction du signal/immunologie , Moelle spinale/cytologie , Moelle spinale/immunologie , Moelle spinale/anatomopathologie
9.
Med Hypotheses ; 157: 110706, 2021 Dec.
Article Dans Anglais | MEDLINE | ID: covidwho-1466787

Résumé

SARS-COV-2 infection causes severe respiratory tract illness leading to asphyxia and death. The onset of infection is associated with loss of smell, blurred vision, headache with bronchopulmonary symptoms. The clinical observations of neurological abnormalities lead us to address the question, does the virus enter into brain and what is the underlying mechanism of brain infection? The working hypothesis is, SARS-COV-2 Spike epitopes modify blood brain barrier and infect glial cells to induce brain inflammation in genetically diverse human population. The hypothesis is tested by determining binding or interacting ability of virus Spike epitope peptides M1Lys60 and Ala240Glu300 with human toll-like receptor 8 (TLR 8), brain targeted Vascular Cell adhesion Molecules (VCAM1) proteins, Zonula Occludens (ZO), glial cell specific protein NDRG2 and Apo- S100B. The molecular dynamic experiments are performed, and root mean square deviation (RMSD) values are determined for interactions between the Spike peptides and selected proteins. The observations demonstrate formation of heterodimeric complex between the epitope peptides and selected protein structures. The viral epitopes have ability to bind with HLA-DRB1 15:01, 07:01 or 03.01 alleles thus found immunogenic in nature. The observations altogether suggest entry of these Spike protein epitopes into human brain causes inflammation.


Sujets)
COVID-19 , SARS-CoV-2 , Encéphale/métabolisme , Épitopes , Humains , Simulation de docking moléculaire , Névroglie , Peptides , Glycoprotéine de spicule des coronavirus/métabolisme , Récepteur de type Toll-8 , Protéines suppresseurs de tumeurs
10.
Cells ; 10(7)2021 06 30.
Article Dans Anglais | MEDLINE | ID: covidwho-1323123

Résumé

Ischemic stroke is the second cause of mortality and the first cause of long-term disability constituting a serious socioeconomic burden worldwide. Approved treatments include thrombectomy and rtPA intravenous administration, which, despite their efficacy in some cases, are not suitable for a great proportion of patients. Glial cell-related therapies are progressively overcoming inefficient neuron-centered approaches in the preclinical phase. Exploiting the ability of microglia to naturally switch between detrimental and protective phenotypes represents a promising therapeutic treatment, in a similar way to what happens with astrocytes. However, the duality present in many of the roles of these cells upon ischemia poses a notorious difficulty in disentangling the precise pathways to target. Still, promoting M2/A2 microglia/astrocyte protective phenotypes and inhibiting M1/A1 neurotoxic profiles is globally rendering promising results in different in vivo models of stroke. On the other hand, described oligodendrogenesis after brain ischemia seems to be strictly beneficial, although these cells are the less studied players in the stroke paradigm and negative effects could be described for oligodendrocytes in the next years. Here, we review recent advances in understanding the precise role of mentioned glial cell types in the main pathological events of ischemic stroke, including inflammation, blood brain barrier integrity, excitotoxicity, reactive oxygen species management, metabolic support, and neurogenesis, among others, with a special attention to tested therapeutic approaches.


Sujets)
Encéphalopathie ischémique/thérapie , Névroglie/physiologie , Lésion d'ischémie-reperfusion/thérapie , Animaux , Barrière hémato-encéphalique/anatomopathologie , Humains , Neurogenèse , Stress oxydatif
11.
Rev Neurol ; 72(11): 397-406, 2021 06 01.
Article Dans Anglais, Espagnol | MEDLINE | ID: covidwho-1248580

Résumé

INTRODUCTION: For more than a decade, following the ECTRIMS Congress, the Post-ECTRIMS Meeting has been held in Spain, where neurologists with expertise in multiple sclerosis (MS) from all over the country meet to review the most relevant latest developments presented at the ECTRIMS congress (on this occasion held together with ACTRIMS). AIM: This article, published in two parts, summarises the presentations that took place at the Post-ECTRIMS Meeting, held online on 16 and 17 October 2020. DEVELOPMENT: This first part includes the latest results regarding the impact of the environment and lifestyle on risk of MS and its clinical course, and the role of epigenetics and genetic factors on these processes. Findings from preclinical and clinical research on the lymphocyte subtypes identified and the involvement of lymphoid follicles and meningeal involvement in the disease are discussed. Changes in brain structure are addressed at the microscopic and macroscopic levels, including results from high-resolution imaging techniques. The latest advances on biomarkers for the diagnosis and prognosis of MS, and on the involvement of the microbiome in these patients are also reported. Finally, results from patient registries on the impact of COVID-19 in MS patients are outlined. CONCLUSIONS: There have been new data on MS risk factors, the impact of MS at the cellular and structural level, the role of the microbiome in the disease, biomarkers, and the relationship between COVID-19 and MS.


TITLE: XIII Reunión Post-ECTRIMS: revisión de las novedades presentadas en el Congreso ECTRIMS 2020 (I).Introducción. Desde hace más de una década, tras el congreso ECTRIMS, se celebra en España la reunión Post-ECTRIMS, donde neurólogos expertos en esclerosis múltiple (EM) de toda España se reúnen para revisar las principales novedades presentadas en el ECTRIMS (en esta ocasión, celebrado junto con el ACTRIMS). Objetivo. En el presente artículo, publicado en dos partes, se resumen las ponencias que tuvieron lugar en la reunión Post-ECTRIMS, celebrada los días 16 y 17 de octubre de 2020 de forma virtual. Desarrollo. En esta primera parte se incluyen los últimos resultados acerca del impacto del ambiente y el estilo de vida sobre el riesgo de EM y su curso clínico, y el papel de la epigenética y los factores genéticos sobre estos procesos. Se discuten los hallazgos en investigación preclínica y clínica sobre los subtipos de linfocitos identificados, y la implicación de los folículos linfoides y la afectación meníngea en la enfermedad. Los cambios en la estructura cerebral se abordan a nivel microscópico y macroscópico, incluyendo resultados de técnicas de imagen de alta resolución. También se presentan los últimos avances sobre biomarcadores para el diagnóstico y el pronóstico de la EM, y sobre la afectación del microbioma en estos pacientes. Por último, se esbozan los resultados de registros de pacientes sobre el impacto de la COVID-19 en los pacientes con EM. Conclusiones. Ha habido nuevos datos sobre factores de riesgo de la EM, impacto de la EM a nivel celular y estructural, papel del microbioma en la enfermedad, biomarcadores y la relación entre COVID-19 y EM.


Sujets)
COVID-19/épidémiologie , Sclérose en plaques , Marqueurs biologiques , Système nerveux central/imagerie diagnostique , Comorbidité , Exposition environnementale , Épigenèse génétique , Europe , Substance grise/anatomopathologie , Humains , Mode de vie , Sous-populations de lymphocytes/immunologie , Tissu lymphoïde/anatomopathologie , Méninges/anatomopathologie , Microbiote , Sclérose en plaques/épidémiologie , Sclérose en plaques/génétique , Sclérose en plaques/microbiologie , Sclérose en plaques/anatomopathologie , Névroglie/anatomopathologie , Neurologie/tendances , Neurones/anatomopathologie , Remyélinisation
12.
Stem Cell Reports ; 16(5): 1156-1164, 2021 05 11.
Article Dans Anglais | MEDLINE | ID: covidwho-1225409

Résumé

Coronavirus disease 2019 (COVID-19) patients have manifested a variety of neurological complications, and there is still much to reveal regarding the neurotropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human stem cell-derived brain organoids offer a valuable in vitro approach to study the cellular effects of SARS-CoV-2 on the brain. Here we used human embryonic stem cell-derived cortical organoids to investigate whether SARS-CoV-2 could infect brain tissue in vitro and found that cortical organoids could be infected at low viral titers and within 6 h. Importantly, we show that glial cells and cells of the choroid plexus were preferentially targeted in our model, but not neurons. Interestingly, we also found expression of angiotensin-converting enzyme 2 in SARS-CoV-2 infected cells; however, viral replication and cell death involving DNA fragmentation does not occur. We believe that our model is a tractable platform to study the cellular effects of SARS-CoV-2 infection in brain tissue.


Sujets)
COVID-19/anatomopathologie , Plexus choroïde/anatomopathologie , Cellules souches embryonnaires humaines/cytologie , Névroglie/virologie , Organoïdes/innervation , Organoïdes/anatomopathologie , Cellules cultivées , Plexus choroïde/cytologie , Plexus choroïde/virologie , Humains , Névroglie/anatomopathologie , Neurones/virologie , Organoïdes/cytologie , SARS-CoV-2/pathogénicité
13.
J Med Virol ; 93(4): 1983-1998, 2021 04.
Article Dans Anglais | MEDLINE | ID: covidwho-1217384

Résumé

Patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection manifest mainly respiratory symptoms. However, clinical observations frequently identified neurological symptoms and neuropsychiatric disorders related to COVID-19 (Neuro-SARS2). Accumulated robust evidence indicates that Neuro-SARS2 may play an important role in aggravating the disease severity and mortality. Understanding the neuropathogenesis and cellular mechanisms underlying Neuro-SARS2 is crucial for both basic research and clinical practice to establish effective strategies for early detection/diagnosis, prevention, and treatment. In this review, we comprehensively examine current evidence of SARS-CoV-2 infection in various neural cells including neurons, microglia/macrophages, astrocytes, pericytes/endothelial cells, ependymocytes/choroid epithelial cells, and neural stem/progenitor cells. Although significant progress has been made in studying Neuro-SARS2, much remains to be learned about the neuroinvasive routes (transneuronal and hematogenous) of the virus and the cellular/molecular mechanisms underlying the development/progression of this disease. Future and ongoing studies require the establishment of more clinically relevant and suitable neural cell models using human induced pluripotent stem cells, brain organoids, and postmortem specimens.


Sujets)
Encéphale/virologie , COVID-19/anatomopathologie , Maladies du système nerveux/virologie , Névroglie/virologie , Neurones/virologie , Animaux , Encéphale/anatomopathologie , Lignée cellulaire , Humains , Maladies du système nerveux/anatomopathologie , Cellules souches neurales , Névroglie/anatomopathologie , Neurones/anatomopathologie
14.
Nat Rev Immunol ; 21(7): 441-453, 2021 07.
Article Dans Anglais | MEDLINE | ID: covidwho-1007586

Résumé

Advancements in human pluripotent stem cell technology offer a unique opportunity for the neuroimmunology field to study host-virus interactions directly in disease-relevant cells of the human central nervous system (CNS). Viral encephalitis is most commonly caused by herpesviruses, arboviruses and enteroviruses targeting distinct CNS cell types and often leading to severe neurological damage with poor clinical outcomes. Furthermore, different neurotropic viruses will affect the CNS at distinct developmental stages, from early prenatal brain development to the aged brain. With the unique flexibility and scalability of human pluripotent stem cell technology, it is now possible to examine the molecular mechanisms underlying acute infection and latency, determine which CNS subpopulations are specifically infected, study temporal aspects of viral susceptibility, perform high-throughput chemical or genetic screens for viral restriction factors and explore complex cell-non-autonomous disease mechanisms. Therefore, human pluripotent stem cell technology has the potential to address key unanswered questions about antiviral immunity in the CNS, including emerging questions on the potential CNS tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Sujets)
Système nerveux central/immunologie , Interactions hôte-microbes/immunologie , Cellules souches pluripotentes/immunologie , Tropisme viral , COVID-19 , Humains , Microglie , Névroglie , Neurones , SARS-CoV-2
16.
Mol Neurobiol ; 57(12): 5263-5275, 2020 Dec.
Article Dans Anglais | MEDLINE | ID: covidwho-738570

Résumé

Similar to its predecessors, coronavirus disease 2019 (COVID-19) exhibits neurotrophic properties, which lead to progression of neurologic sequelae. Besides direct viral invasion to the central nervous system (CNS), indirect CNS involvement through viral-mediated immune response is plausible. Aberrant immune pathways such as extreme release of cytokines (cytokine storm), autoimmunity mediated by cross-reactivity between CNS components and viral particles, and microglial activation propagate CNS damage in these patients. Here, we review the currently available evidence to discuss the plausible immunologic pathways that may contribute to the development of COVID-19 neurological complications, namely Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, Guillain-Barre syndrome, seizure, and brainstem involvement.


Sujets)
Betacoronavirus , Infections à coronavirus/complications , Maladies du système nerveux/étiologie , Pandémies , Pneumopathie virale/complications , Angiotensin-converting enzyme 2 , Animaux , Betacoronavirus/immunologie , Betacoronavirus/pathogénicité , Tronc cérébral/physiopathologie , Tronc cérébral/virologie , COVID-19 , Infections à coronavirus/épidémiologie , Infections à coronavirus/immunologie , Syndrome de libération de cytokines/étiologie , Syndrome de libération de cytokines/immunologie , Effet cytopathogène viral , Épidémies de maladies , Syndrome de Guillain-Barré/étiologie , Syndrome de Guillain-Barré/immunologie , Humains , Souris , Sclérose en plaques/étiologie , Sclérose en plaques/immunologie , Protéines de tissu nerveux/physiologie , Maladies du système nerveux/immunologie , Maladies neurodégénératives/étiologie , Maladies neurodégénératives/immunologie , Névroglie/anatomopathologie , Névroglie/virologie , Neurones/anatomopathologie , Neurones/virologie , Peptidyl-Dipeptidase A/physiologie , Pneumopathie virale/immunologie , Récepteurs viraux/physiologie , Insuffisance respiratoire/étiologie , Insuffisance respiratoire/physiopathologie , SARS-CoV-2 , Crises épileptiques/étiologie , Crises épileptiques/immunologie , Syndrome respiratoire aigu sévère/complications , Syndrome respiratoire aigu sévère/épidémiologie , Accident vasculaire cérébral/étiologie , Accident vasculaire cérébral/immunologie
SÉLECTION CITATIONS
Détails de la recherche